Blood Vessels & Hemodynamics

“Hemo” = blood, "Dynamics" = power
Forces involved in circulating blood throughout the body

What do Blood vessels do?
• Adjust velocity & volume of blood flow
• Transport & exchange of substances absorbed from the outside world & those produced by the deepest, tiniest tissues of our bodies
 – Eg O2, CO2, nutrients, cellular metabolic wastes, hormones etc.

5 Types of Blood Vessels

1. Arteries: carry blood away from the heart
2. Arterioles: very small arteries
3. Capillaries: tiniest vessels, allow exchange of substances between blood and body tissues
4. Venules: very small veins
5. Veins: carry blood back to the heart

Vasa Vasorum, Blood vessel of the blood vessel

• Larger blood vessels require smaller blood vessels to supply oxygen and nutrients to their smooth muscle tunica media
• Vasa Vasorum means ‘blood vessels of the blood vessels’
 – Small vessels located within larger vessels
Arteries and Veins have 3 Tunics (Coats)

1. The Tunica Interna (intima), also called the endothelium. The innermost layer is only 1-cell thick and made of flat cells.

2. The Tunica Media has smooth muscle cells + Elastic fibers for regulating the diameter of the lumen.

3. The Tunica Externa is made of collagen + elastic fibers. This outermost covering contains nerves, vasa vasorum, and anchors the vessel to the surrounding tissue.

Blood vessel types and functions

Largest arteries: ELASTIC ARTERIES

- Have the largest diameter, but their walls are relatively thin. Examples: the aorta or pulmonary artery.
- They function as a PRESSURE RESERVOIR:
 - They stretch when the ventricle pumps blood into them.
 - When the ventricles relax, they recoil, propelling blood forward.
- Also called conducting arteries because they conduct blood from the heart to the medium-sized arteries.
Elastic lamellae

- Layers of elastic fibers in the tunica media, elastic lamellae, make elastic arteries able to stretch & RECOIL which maintains diastolic blood pressure.
- Elastic fibers give arteries high compliance, the ability to stretch in response to pressure without tearing.

Blood Pressure generation

‘Blood Pressure’ refers to the Hydrostatic pressure exerted by blood on the wall of a blood vessel.

Blood Pressure depends on:
1. Cardiac Output
2. Vascular Resistance
3. Total Blood Volume

Blood Pressure = Cardiac Output x Resistance

- The elastic vessels cushion the pulsations generated by the heart.

Systolic and Diastolic Pressure

- Initial blood pressure is generated by contraction of the Left Ventricle & CO (eg. 120mm Hg)
- **Systolic BP**: the highest pressure attained in the arteries during systole
- **Diastolic BP**: the lowest arterial pressure during diastole
- BP falls progressively with distance from left ventricle. BP is 0 at Right ventricle

Checking BP & Pulse

- Pulse: stretch & recoil of elastic arteries create the wave
- Heart rate creates the rate
 - Normal: 70-80 bpm
 - Tachycardia: >100 bpm
 - Bradycardia: < 50 bpm

- BP cuff & stethoscope: Cut off circulation to the arm with a BP cuff. listen for Karotkoff sounds as you release and reduce the pressure in the cuff
 - First sound heard = systolic BP, Last sound heard = diastolic BP
Pulse Pressure vs Mean Arterial Pressure (MAP)

- The difference between systolic & diastolic pressure is called the pulse pressure.
- The average of the systolic and diastolic pressures is called the mean arterial pressure.

(FYI) Pulse pressure: young vs old

- As we age, vessels become harder and more dilated.
- The can no longer cushion the wave.
- So, both pulse pressure and pulse wave velocity increase.

Medium sized Muscular Artery

- Capable of great vasoconstriction / vasodilation to adjust vessel pressure & thus rate of blood flow.
- Muscular arteries have more smooth muscle, fewer elastic fibers in the tunica media.

Changes Vessel Diameter

SMOOTH MUSCLE allows artery to contract or dilate, changing vessel diameter.

- Vasoconstriction: a decrease in lumen diameter
 - Sympathetic innervation
- Vasodilation: an increase in lumen diameter
 - Parasympathetic (ACh), NO, H+, lactic acid
- Vasospasm: constriction of an artery when it’s damaged to reduce blood loss.
Medium-Sized MUSCULAR ARTERIES

- The great vasoconstriction or vasodilation, determines the distribution, or % of blood that goes to the various parts of the body.
- Muscular arteries are also called distributing arteries.

HEMODYNAMICS: factors affecting Blood Flow

- Blood Flow (mL/min) = volume of blood flowing through any tissue in a given period of time.
- Total Blood Flow = Cardiac Output (CO) – Volume of blood circulating through the systemic (or pulmonary) vessels each minute.
- CO = heart rate (HR) x stroke volume (SV).

Distribution of CO depends on:
1. Pressure differences
 - blood flows from high to low pressure, greater pressure difference = greater blood flow.
2. A vessel’s resistance to blood flow
 - The higher the resistance, the smaller the blood flow.

(RESISTANCE) ARTERIOLES: Friction

1. Arterioles Regulate RESISTANCE TO BLOOD FLOW
 - Resistance is due to friction between blood & blood vessel wall.
 - Sympathetic nerves in the tunica externa constrict vessels.
 - More sympathetic constriction, more friction, more resistance to flow.

2. Arterioles Regulate blood flow into capillaries
 - The terminal portion of an arteriole is called the “metarteriole”.
 - Each metarteriole has various precapillary sphincters which control blood flow into capillaries.

SUMMARY of ARTERY Types

1. Elastic or Conducting arteries
 - Pressure reservoir. Maintains diastolic /constant flow.

2. Muscular or Distributing arteries
 - Distribute blood to organs (%).
 - Regulate rate of blood flow (mL/min)

3. Arterioles (Resistance) Arterioles
 - Regulate resistance to blood flow.
 - Regulate flow of blood into capillaries.

4. Arteriole Capillaries
 - Exchange vessels.
Section 2

CAPILLARIES: EXCHANGE VESSELS

Microcirculation

- The “Microcirculation of the body” refers to blood flow through 1) metarterioles 2) capillaries and 3) postcapillary venules
- Capillaries connect arterioles to venules. Metarterioles contract and relax spontaneously.

Capillary Beds & Metabolic Activity

- Capillary beds: 10-100 capillaries arise from 1 metarteriole
- Throughfare channel: the distal end of a metarteriole can bypass a capillary bed
- Usually only a small part of a capillary network is full, but, when a tissue is active (i.e. contracting muscle), the entire network fills with blood
- Tissues with high metabolic activity eg muscles, liver, kidneys, nervous system have more capillaries
- Tissues with lower metabolic activity eg tendons, ligaments have less capillaries
- No capillaries in a few tissues, such as cornea, lens of the eyes, and cartilage

VELOCITY of Blood Flow Slows at branched capillaries

- Velocity (cm/sec) depends on branching:
 - When an artery branches, cross sectional area increases, so velocity of flow decreases
 - When venules merge to form a vein, cross sectional area decreases so velocity increases
 - Thus blood flow is slowest at capillaries which is good for exchange of materials
- Circulation time: time it takes 1 drop of blood to go from R atrium, to pulmonary & systemic circulation and back to R atrium. Normally 1 min at rest
Vasomotion

- **Vasomotion**: the spontaneous, intermittent contraction & relaxation of metarterioles creates **intermittent blood flow through capillaries**

CAPILLARIES: Exchange Vessels

- Have no tunica media, no tunica externa, no innervation - just endothelial cells & a basement membrane
- **Exchange** vessels: Their primary function is to exchange substances between **blood** and **interstitial fluid**

TYPES OF CAPILLARIES:

1. **CONTINUOUS**
 - Endothelial cells form a **continuous tube** except for intercellular clefts
 - Found in brain, lungs, skeletal & smooth muscle

2. **FENESTRATED** (‘windowed’)
 - The plasma membrane has fenestrations or pores
 - Found in kidneys, villi of small intestine, choroid plexus in brain, endocrine glands

3. **SINUSOID**
 - Wider, more winding
 - Large fenestrations and an incomplete basement membrane
 - Protein & RBCs can pass
 - Found in red bone marrow, liver, spleen, anterior pituitary

Capillary Exchange

There are 3 ways to exchange substances between the blood & the interstitial fluid:

1. **Diffusion** (a)
2. **Transcytosis** (b)
3. **Bulk flow** (d,e f,c)
Capillary Exchange

- Solutes can diffuse from high concentration to low concentration, crossing capillary walls through the:
 1. Lipid bilayer of Endothelial cell
 2. Intercellular clefts
 3. Fenestrations

- Plasma Proteins normally cannot cross capillary walls

- However, in sinusoid capillaries, proteins & even RBCs can cross. Eg, in the:
 - Liver: plasma proteins cross - fibrinogen & albumin
 - Red marrow: RBCs cross

- Blood-brain barrier has tight junctions that limit diffusion

Direction of movement of some substances

- From Blood to ECF to Cells:
 - O₂
 - Glucose
 - Amino acids
 - Hormones
- From Cells to ECF to Blood:
 - CO₂
 - Wastes

2. Capillary TRANSCYTOSIS

- Used to transport large, lipid-insoluble molecules that cannot cross the capillary walls in any other way
 - Eg insulin, antibodies
- Substances from the blood plasma enter capillary endothelial cells by endocytosis and exit the other side, into the interstitial space, by exocytosis

3. BULK FLOW: Filtration / Reabsorption

- Due to pressure differences, FLUID with large numbers of ions, molecules, & particles dissolved in it, will cross the capillary.
 - Movement occurs from high pressure to low pressure
 - faster rate than diffusion
- Diffusion is about specific solute & depends on concentration gradient
- Bulk flow depends on pressure & is more about fluid with solutes in it.
- Regulates relative volumes of blood and interstitial fluid
- Filtration: flow from capillaries into interstitial fluid
- Reabsorption: flow from interstitial fluid into capillaries
Filtration: FLUID is PUSHED OUT OF CAPILLARY by
1. Blood hydrostatic pressure (BHP) – pressure generated by pumping action of the heart
2. Interstitial fluid osmotic pressure (IFOP) \(\approx 1 \)

Reabsorption: FLUID is PULLED INTO CAPILLARY by
1. Blood colloid osmotic pressure (BCOP) - created by concentration of plasma proteins in suspension
2. Interstitial fluid hydrostatic pressure (IFHP) \(\approx 0 \)

Net Filtration Pressure (NFP)
- Indicates final direction of fluid movement
- Net Filtration Pressure (NFP) = (pressures that promote filtration) - (pressures that promote reabsorption)
 - Arterial end: net pressure out: 10 mmHg so fluids tend to leave
 - Venous end: net pressure in: -7 mm Hg so fluids tend to be absorbed

Starling’s Law Of The Capillaries
- Nearly as much fluid is reabsorbed as was filtered
 - 85% of the fluid that was filtered is then reabsorbed
 - Not 100% fluid returns because a few plasma proteins leave vessels into interstitial space
 - Remainder of fluid & proteins enter lymphatic capillaries (3L/day) & is eventually returned to blood

Bulk flow to Lymphatic circulation
- Bulk flow creates interstitial fluid which then flows into the lymph and finally returns to the blood vessels
Lymphatic circulation

EDEMA: Increased interstitial fluid

- An abnormal increase in interstitial fluid volume occurs if there is:
 - Increased filtration of fluid & solutes out of capillary due to:
 - Increased capillary permeability to plasma proteins
 - Increased blood pressure
 - Or, decreased reabsorption of fluid & solutes from ECF due to:
 - Decreased # of plasma proteins in capillaries from liver disease, burns, malnutrition, kidney disease

Veins

- Same three tunics as arteries: interna, media, externa
 - Tunica externa is thickest layer
- Thinner walls - so the lumen of vein is larger than the lumen of a comparable artery
- Not designed to withstand high pressure
- Many veins contain valves
 - Valves are thin folds of the tunica interna
 - Cusps point towards the heart
 - Prevent backflow of blood

Section 3

VEINS
2 kinds of VENULES:

1. **Postcapillary Venules** are the smallest venules. They form when several capillaries unite
 - Walls are very porous
 - Serve as the site for white blood cell emigration

2. **Muscular Venules** have 1-2 layers of smooth muscle
 - No more exchange with interstitial fluid

Veins Provide a Blood Reservoir

- **Blood reservoir**: at rest, the majority (64%) of blood is in the veins and venules
 - Especially veins of the liver & spleen
- **if the need arises, blood can be diverted quickly to where it is needed through venoconstriction**
 - Constriction of veins, reduces the volume of blood in the reservoirs
 - Eg sympathetic impulses during exercise constrict veins to increase cardiac output

Venous Blood Flow

- As the cross sectional area decreases, velocity of venous blood flow increases.
- Venous blood pressure is about 16mmHg which moves it toward the heart

Venous Return (to the Heart)

- Venous Return refers to the volume of blood flowing back from the systemic veins to the right side of the heart

Venous return depends on:

1. **Contraction of LEFT ventricle**
 - Only 16 mmHg of pressure left when blood arrives at venules is still enough to move it to the heart
 - Increased pressure in R atrium or R ventricle will decrease venous return
2. **Skeletal muscle pump** - More contractions increase VR
3. **Respiratory pump** - Deeper breaths increase VR
4. **Total blood volume**
Skeletal Muscle Pump (Venous Return)

1. At rest: both proximal & distal valves are open, blood is flowing due to 16mm Hg blood pressure of veins

2. A muscle Contraction pushes blood through top valve "milking" it towards heart. Because bottom valve blocks blood flow downwards.

3. upon Relaxation recently milked blood cannot flow back down because top valve closes to block it. Middle section is 'empty', thus BP is higher in foot. Blood from foot opens bottom valve and fills vein.

Respiratory Pump (Venous Return)

- Inhalation moves diaphragm down, increasing the size of the thoracic cavity
- pressure decreases in thoracic cavity while increasing pressure in the abdominal cavity.
- Blood moves from higher pressure abdomen to lower pressure thorax.

Factors affecting Blood Pressure

- Increased blood volume
- Skeletal muscle pump
- Respiratory pump
- Venosconstriction
- Increased sympathetic impulses
- Increased sympathetic impulses and hormones from adrenal medulla
- Increased venous return
- Increased heart rate (HR)
- Increased stroke volume (SV)
- Increased blood viscosity
- Increased total blood vessel length
- Decreased blood vessel radius (vasoconstriction)
- Increased cardiac output (CO)
- Increased mean arterial blood pressure (MAP)
- Increased number of red blood cells, as in polycythemia
- Increased body size, as in obesity
- Increased systemic vascular resistance (SVR)
Anything that increases cardiac output will increase blood pressure

\[\text{CO} = \text{SV} \times \text{HR} \]

- Stroke Volume depends on
 1. Preload (= Venous Return)
 2. Contractility
 3. Afterload

VASCULAR RESISTANCE

- Vascular Resistance, which opposes blood flow, is caused by friction between blood & blood vessel walls

- Vascular resistance depends upon:
 1. Size of vessel lumen: smaller lumen has more friction / resistance to flow
 3. Total blood vessel length: longer vessels, increase friction & resistance (add 400 miles of additional blood vessels for each 2.2lb. of fat)

- The Vasomotor center in the brainstem regulates Systemic Vascular Resistance (SVR) or Total Peripheral Resistance by causing arterioles to constrict (α1) or dilate (β2).

- **The major role of ARTERIOLES** is to constrict or dilate to control the resistance to blood flow in the body as a whole.
NEURAL CONTROL OF BLOOD PRESSURE

The Cardiovascular Center

- The **Cardiovascular Center** affects heart rate, contractility, and vasoconstriction
 - Inputs:
 - Higher brain, Baroreceptors, Chemoreceptors, Proprioceptors
 - Outputs:
 - Cardioaccelerator nerves, Vasomotor nerves, Vagus nerve

Cardiovascular Center in Medulla

- CV center is in medulla oblongata
- Controls 1. **Heart rate** 2. **Contractility** 3. **Blood vessel diameter**
- Therefore affects: stroke volume, blood pressure, blood flow to specific tissues...
- Continuous impulse from vasomotor nerves creates constant mild contraction of arterioles, "vasomotor tone": resting level of systemic vascular resistance

Neural INPUT to CV Center

1. **Higher Brain**: cortex, limbic system, hypothalamus
2. **Sensory receptors**:
 a) **Proprioceptors**: detect motions / position in space of joints and muscles
 b) **Baroreceptors**: detect pressure changes & stretch in blood vessel walls
 c) **Chemoreceptors**: monitor concentration of various chemicals in the blood eg O2 & CO2
b) Baroreceptors: Pressure & Stretch

- **Baroreceptors** are pressure-sensitive receptors:
 1. Aortic arch receptors (Aorta)
 2. Carotid Sinus receptors
 - Carotid sinuses: small widenings on R & L internal Carotid arteries
 3. Other large arteries in neck / chest

- **Aortic Reflex**: regulates systemic blood pressure. Signals reach CV center via vagus nerve (CN X)

- **Carotid Sinus reflex**: helps regulate blood pressure in brain. Signals sent to CV center via glossopharyngeal nerve (CN IX)

FYI Baroreceptors: Carotid Sinus Massage & Carotid Sinus Syncope

1. **Carotid sinus massage**: massaging neck over carotid sinus, increases input to CV which reflexively slows heart rate. Use in a person with paroxysmal supraventricular tachycardia

2. **Carotid sinus syncope**: fainting due to excessive pressure on, or hypersensitivity of the carotid sinus. Can be due to hyperextension of head or tight collars

Syncope (Fainting)

- A sudden **loss of consciousness** not due to head trauma with spontaneous recovery
- From **insufficient blood flow** to brain, or, cerebral **ischemia**

Causes:
- Vasodepressor syncope – sudden emotional stress
- Situational syncope – pressure stress associated with urination, defecation, or severe coughing.
- Drug-induced syncope – antihypertensives, diuretics, vasodilators, & tranquillizers
- Orthostatic HYPOtension – an excessive decrease in **blood pressure** that occurs upon standing up

Baroreceptor Reflexes: when BP falls or rises...

If BP falls baroreceptors stretch less → ↓ rate of impulses to CV

1. CV ↓ parasympathetic stimulation
2. CV ↑ sympathetic stimulation to:
 a) Heart via Cardiac Accelerator Nerves
 b) Blood vessel walls via Vasomotor Nerves
3. Adrenal medulla releases: Epi, NE

Results: Heart: ↓HR & contractility (Thus ↑CO)
Vessels: ↑SVR/vasoconstriction
Thus BP increases

If BP rises baroreceptors stretch more → ↑ rate of impulses to CV

1. CV increases parasympathetic v/agus nerve stimulation
2. CV decreases sympathetic stimulation

Result: H: ↑HR & contractility; V: ↓SVR/ Vasodilation, Thus BP lowers
c) Chemoreceptors detect high CO₂, H+

- Chemoreceptors, are located next to the baroreceptors in:
 - Carotid Bodies
 - Aortic Bodies

- Chemoreceptors send signals to the Cardiovascular center in the medulla when there is:
 - Low O₂ Hypoxia
 - High CO₂ Hypercapnia
 - High H⁺ Acidosis

Chemo-receptors

CV center response to chemoreceptor stimulation:
- Increases sympathetic vasoconstriction of arterioles & veins, increasing BP & O₂ delivery
- Sends info along to respiratory center to adjust breathing rate

Autoregulation Of Blood Pressure

- **AUTOREGULATION:** ability of a tissue to automatically adjust its own blood flow to match its metabolic demands
 - At arteriole/capillary/organ level
 - Eg blood flow increases to ear when listening
 - Stimuli that cause autoregulatory changes in blood flow are either:
 1. physical or
 2. chemical
Autoregulation Of Blood Pressure

- Physical changes
 - **Warming** promotes vasodilation
 - **Cooling** causes vasoconstriction
 - **Arteriolar Myogenic response** – smooth muscle contracts more forcefully when it is stretched

- Vasodilating & Vasoconstricting chemicals
 - **Vasodilating** chemicals: K+, H+, lactic acid, ATP, and nitric oxide (NO). Kinins and histamine, released from tissue trauma
 - **Vasoconstricting** chemicals: thromboxane A2, superoxide radicals, serotonin (from platelets), and endothelins

FYI - nitric oxide dilates an artery

- Artery endothelial cells can produce Nitric Oxide to relax it’s own smooth muscle & dilate

Systemic vs Pulmonary Autoregulation of BP

- pulmonary and systemic circulation have opposite autoregulatory responses to low O\textsubscript{2}:
 - **Systemic** blood vessels **DILATE in response to low O\textsubscript{2}** to increase O\textsubscript{2} delivery
 - **Pulmonary** blood vessels **CONSTRICIT under low O\textsubscript{2}** to ensure blood flows to better ventilated areas of lung
SHOCK

SHOCK: Inadequate blood flow to body tissues

4 kinds of shock:

1. Hypovolemic: Venous return & CO declines
 - Sudden hemorrhage
 - Trauma
 - Aneurysm rupture
 - Diarrhea, vomit
 - Excess sweat, urine

2. Cardiogenic: heart doesn’t pump well
 - Myocardial infarction
 - Arrhythmias
 - Valve problems
 - Ischemia

3. Vascular: (vasodilation) Decrease in systemic vascular resistance
 - Anaphylactic shock
 - Histamine causes vasodilation
 - Septic shock
 - Bacterial toxins produce vasodilation

4. Obstructive: circulation is blocked
 - Pulmonary embolism

Signs and symptoms of shock

1. Low Systolic BP < 90 mmHg
2. Rapid HR:
 - sympathetic stimulation, Epi, NE
3. Weak & rapid pulse:
 - Reduced CO
 - Fast HR
4. Cool, pale, clammy skin:
 - Sympathetic constriction
 - Sympathetic sweat stim
5. Altered mental state:
 - Reduced Oxygen to brain
6. Reduced urine formation
 - Increased ADH, Aldosterone
7. Thirsty
 - From loss of ECF
8. Blood pH low (acidic)
 - Lactic acid buildup-anaerobic respiration
9. Nausea
 - Impaired blood flow to GI
HORMONAL CONTROL OF BP

Hormonal Control of Blood Volume / Venous Return

- Hormones that raise blood volume or increase vasoconstriction thus increase blood pressure
 - (RAA) Renin- Angiotensin- Aldosterone
 - From Liver, Kidney, Lung, Adrenal
 - (ADH) Antidiuretic Hormone
 - From Posterior Pituitary
 - (E & NE) Epinephrine & Norepinephrine
 - From Adrenal Medulla

- Hormone that lowers blood volume or vasodilate to decrease blood pressure
 - (ANP) Atrial Natriuretic Peptide
 - From the atria of the heart

Hormones that Increase BP

1. Renin-Angiotensin-Aldosterone (RAA) system
 - If Blood volume falls or blood flow to the kidney decreases
 - Kidney releases Renin into blood
 - Lung releases Angiotensin Converting Enzyme (ACE) into blood.
 - Angiotensinogen (from liver) is changed to active hormone Angiotensin II which:
 - Vasoconstricts, raising BP
 - Causes Aldosterone secretion from adrenal cortex to reabsorb more water in kidneys, raising blood volume
Hormones that Increase BP: ADH

2. Antidiuretic hormone (ADH) or Vasopressin

- Is produced in the hypothalamus, but released from the posterior pituitary
- Response to dehydration/decreased blood volume
- Increases
 - Vasoconstriction
 - Water reabsorption by kidneys and therefore blood volume

Hormones that Increase BP: NE & Epi

3. Epinephrine and Norepinephrine

- Released by Adrenal medulla with sympathetic stimulation
- Increases: heart rate, force of contraction, Peripheral vasoconstriction, & Coronary vasodilation

Only one Hormone LOWERS BP: ANP

ATRIAL NATRIURETIC PEPTIDE: ANP

- Released by cells of atria
- Lowers blood pressure by:
 - vasodilation
 - reducing blood volume - promotes loss of salt and water in urine

<table>
<thead>
<tr>
<th>TABLE 21.2 Blood Pressure Regulation by Hormones</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACTOR INFLUENCING BLOOD PRESSURE</td>
</tr>
<tr>
<td>-----------------------------------</td>
</tr>
<tr>
<td>CARDIAC OUTPUT</td>
</tr>
<tr>
<td>Increased heart rate and contractility</td>
</tr>
<tr>
<td>SYSTEMIC VASCULAR RESISTANCE</td>
</tr>
<tr>
<td>Vasoconstriction</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Vasoedilation</td>
</tr>
<tr>
<td>BLOOD VOLUME</td>
</tr>
<tr>
<td>Blood volume increase</td>
</tr>
<tr>
<td>Blood volume decrease</td>
</tr>
</tbody>
</table>

*Acts at α1 receptors in arterioles of kidneys and skeletal muscle; norepinephrine has a much smaller vasoconstricting effect.